
J .  Fluid Mech. (1985), vol. 154, pp. 337-356 
Printed in Great Britain 

337 

Forces on cylinders in viscous oscillatory flow at 
low Keulegan-Carpenter numbers 

By P. W. BEARMAN, M. J. DOWNIE, J. M. R. GRAHAM 
AND E. D. OBASAJU 

Department of Aeronautics, Imperial College, London SW7 2BY 

(Received 30 June 1983 and in revised form 18 November 1984) 

This paper presents a comparison between theory and experiment for the in-line forces 
on cylinders of general cross-section in planar oscillatory flows of small amplitude. 
The theoretical analysis evaluates corrections to the standard inviscid inertial force 
at low Keulegan-Carpenter numbers which arise from the presence of viscous laminar 
boundary layers and from the development of vortex shedding. The boundary-layer 
contribution due to both skin friction and displacement effects is calculated to first 
order in the Stokes parameter pf. The contribution to the in-line force from 
separation and vortex shedding, for which the results presented only apply to 
sharp-edged bodies, is taken from previous work on vortex shedding from isolated 
edges using the discrete vortex modelling technique. The resulting force has com- 
ponents both in phase with the fluid acceleration (inertia) and in phase with the 
velocity (drag). 

The theoretical results are compared to measurements taken in a U-tube water 
channel on a number of cylinders of different cross-section including circular cylinders 
and sharp-edged sections. The comparisons suggest that the theory is valid for 
Keulegan-Carpenter numbers below about 3 and for moderately high values of the 
p parameter. 

1. Introduction 
When a cylindrical body moves with oscillatory motion in a direction perpendicular 

to its axis, in an otherwise stationary fluid, it experiences a force opposing the motion 
which may be considered to be composed of three parts: due to the inertia of the 
accelerating outer flow; due to the influence of viscous boundary layers; and due to 
separation of these boundary layers leading to the shedding of vortices. If the 
amplitude of the motion is small compared to the body diameter D, as is the case 
considered in this paper, the dominant part of the force is the inviscid inertia force. 
This force is related to the acceleration of the fluid in inviscid attached flow past the 
cylinder and is the only force present in the limit of very high Reynolds number and 
very small Keulegan-Carpenter number. For periodic motion the Keulegan-Carpenter 
number K ,  = o , T / D ,  where 0, is the maximum velocity of the body and T is the 
period of the motion, is proportional to the amplitude of the motion divided by the 
body diameter. The Reynolds number is defined as R = 0, Dlv,  where v is the 
kinematic viscosity. When the cylinder is at rest and the fluid is oscillating the inertia 
force is increased by the Froude-Krylov force, a buoyancy force caused by the 
pressure gradient imposed on the fluid to generate the oscillating flow. This paper 
is mainly concerned with the problem of fixed cylinders in oscillating flow and the 
work has application to the problem of predicting forces on structures subject to water 
waves. 
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The second of the three components of the force arises from the influence of 
viscosity on the attached flow on the body surface through a displacement effect and 
through the generation of skin friction. This component of force is insignificant for 
most large structures but may become important in model testing in wave tanks 
where the Reynolds numbers are significantly smaller than those of the full-scale 
structure. 

For arbitrary body shapes the regime for attached flow will depend on both the 
Keulegan-Carpenter number and the Reynolds number. I n  the case of a circular 
cylinder there is a regime at sufficiently small Keulegan4arpenter number for which 
the flow round the body remains attached throughout the motion regardless of the 
Reynolds number. The analysis for oscillatory viscous flow was first given by Stokes 
(1851) for the case of spherical and cylindrical pendulum bobs. His solution is given 
in the form of a series expansion in powers of p-: where the viscous-frequency 
parameter /3 = D2/vT. 

For a circular cylinder moving with velocity U = oo coswt where w = 2n/T, in 
otherwise still fluid, the force F per unit length of the cylinder is 

F = +pD2wo,,(k sin wt - k’ coswt), (1) 

with k = 1 + 4(nP)-?, 

and k‘ = 4(@)-:. 

Equation (1) shows that viscous effects contribute both to the inertial force, which 
is the part of the force in phase with acceleration, and to the drag force, which is de- 
fined as the part of the force in phase with velocity. Sarpkaya (1981) and Bearman 
et al. (1981) have both discussed the importance of viscous effects at low Keulegan- 
Carpenter numbers. 

Expressing (1) in the form suggested by Morison et al. (1950) for wave forces on 
structures, namely : 

gives 

and 

dU 
dt M ’  

F = fpUl UI D C D + ~ ~ p D 2 -  C 

(3) 

for the inertia and drag coefficients. C ,  is obtained by multiplying each side of ( 2 )  
by coswt and integrating over the period of one cycle. This method for obtaining C ,  
which was used originally by Keulegan & Carpenter (1958) will be used throughout 
this paper. 

The viscous parameter p appearing in the above expressions is the ratio of the 
Reynolds number to the KeuleganXarpentcr number and has been shown by 
Sarpkaya (1976) to  be an important influence on circular-cylinder flow. It is a 
convenient parameter for periodic oscillatory flows since, for a given model size and 
fluid, the /3 parameter depends only on the flow frequency, whereas the Reynolds 
number dependson flow frequency and oscillation amplitude. In small-scale laboratory 
tank tests the p parameter typically takes a value in the range lo2 to lo3. Hence i t  
can be seen from (1) that the higher-order terms O(p-l)  are likely to be unimportant 
but that the r j  terms can make a significant contribution to the force. For this reason 
calculation of viscous effects is developed in this paper up to O(p-i )  and applied to 
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bodies of general cross-section. This approach (see Graham 1981) follows the earlier 
analysis of Stuart (givenin Rosenhead 1963) but includes boundary-layer displacement 
effects as well as skin friction. 

In the case of aJixed circular cylinder in an oscillatory flow the resulting force 
coefficients are : 

and 

These are the same as Stokes' results (3) to 0(/3-:) except for the additional inviscid 
inertia component due to the Froude-Krylov force. 

The problem of a fixed circular cylinder in oscillatory incompressible viscous flow 
has also been investigated theoretically by Wang (1968) to O ( / 3 $ )  using the method 
of inner and outer expansions. The solution applies to high-frequency oscillating flow 
of instantaneous velocity U = o,,eitl, for which S + 1, RS >> 1 and RIS < 1 .  Here 
the frequency parameter S = xK;' and t, = wt. In the case of an oscillating cylinder 
in otherwise still fluid, the values of the force coefficients calculated from Wang's 
results can be shown to agree with (3) to leading order in B-4. In the analogous case 
of a fixed circular cylinder in oscillatory flow, the result for the in-line force is 

(Note that, in Wang's original expression, the Reynolds number was half that used 
here.) This can be expressed, as before, in terms of Morison's equation (2) with force 
coefficients : 

CD = #x3K:'(7cP)-' + #n2Ki' F'-$'K;'(nP)-'; 

c, = 2+4(7q) - :+(np) - t  

The theoretical results for the oscillating circular cylinder CD have been tested 
indirectly by several investigators who measured the decay of the amplitude of 
vibration of cylindrical pendula. In such experiments, however, the flow is not truly 
analogous to a cylinder vibrating in a direction normal to its length, partly because 
it is not two-dimensional, but also, as was pointed out by Stuart & Woodgate (1954), 
because there is a longitudinal component of acceleration present. A further drawback 
with this technique is the problem of end effects, which are usually assumed to be 
negligible providing the length-to-diameter ratio of the pendulum is large. Three- 
dimensional effects of this type may be eliminated by studying cylinders in true planar 
motion. 

The third component of the force on a body in oscillatory flow arises from 
separation of the boundary layer and the generation of vortices. Separation occurs 
on bodies with continuous surface slope when the Keulegan-Carpenter number 
exceeds some critical value, depending on the Reynolds number (or /?.parameter) and 
the local body shape. In the case of a circular cylinder it is usually expected that the 
onset of vortex shedding occurs at a Keulegan-Carpenter number of about 5 ,  above 
which a rapid increase in the drag coefficient is observed to take place (see for example 
Sarpkaya 1976; Sarpkaya & Isaacson 1981). One of the purposes of the present paper 
is to evaluate the drag coefficient in the neighbourhood of this critical value. However, 
bodies which have sharp edges apparently do not have any low-Keulegan-Carpenter- 
number regime for which the flow remains attached unless perhaps when the /3 
parameter is extremely small. If the edge is truly sharp, separation will always occur 



340 P. W .  Bearman, M .  J .  Downie, J .  M .  R. Graham and E. D .  Obasaju 

at the edge. Such a separation might remain in the form of a closed bubble in 
low-Reynolds-number unidirectional flow but in oscillatory flow it appears that the 
action of flow reversal sweeps the detached vorticity out into the fluid to form a shed 
vortex. 

When the separation points are known an inviscid analysis can be used to give a 
reasonable prediction of the force Fv induced by vortex shedding. This type of 
calculation was carried out by Graham (1980) for the force induced on an isolated 
sharp edge in oscillatory flow. The method of calculating this force involved modelling 
the separating shear layers, which feed the growing vortices, by the discrete- 
point-vortex method. The vortex force was found from this analysis to be proportional 
to K,  raised to a power depending on the internal angle 6 of the edge. The resulting 
forms for the coefficients in Morison's equation are 

and 

where CMo is the inviscid inertia coefficient for attached flow. The factors A, and Be 
were calculated, for different values of edge angle, by using the discrete vortex 
method. These results have been used in the present paper to compute separated 
flow-force coefficients for three sharp-edged bodies: a square section face on to the 
flow, a square section diagonally on to the flow and a thin Aat plate with edge angles 
of 60'. 

A corresponding series of force measurements have been carried out on similar 
bodies in planar oscillatory flow. The flow is kinematically the same in these tests 
as that around a corresponding oscillating body in otherwise still fluid. Results will 
be presented for the streamwise force on sharp-edged cylinders and circular cylinders. 
At the values of B used in these experiments the square-section cylinders are subject 
to a small viscous contribution to the overall in-line force. It is possible, as in the 
case of the circular cylinder, to calculate this force to O(P4)  by using boundary-layer 
theory and assuming attached flow. The results of these computations will be 
presented. However, it is clear that except at the very lowest Keulegan-Carpenter 
numbers, where separation effects on the body are confined to small regions 
surrounding each edge, attached flow will not give an adequate prediction of the 
inviscid surface velocity, and hence of the boundary -layer thickness. Hence the 
viscous-force prediction is likely to be considerably in error for these cases. In this 
sense the three parts of the force under consideration interact with one another. 

The present paper compares predicted in-line forces, for the three sharp-edged 
sections listed above and for the circular cylinder with measurements made in 
oscillatory flow in a U-tube. The aim is to establish the behaviour of the force 
coefficients, C, and C,, at very low K,, where at present there is little or no 
experimental data available, and to provide a means of checking the validity of the 
attached viscous- and separated inviscid-flow theories. 

2. Experimental arrangement and presentation of results 
The measurements were made in the planar oscillatory flow generated in a U-tube 

water tunnel. The working section of the U-tube, which is in the horizontal limb, is 
0.61 m square and 1.5 m long. The vertical arms are 2.5 m high. Constant-amplitude 
oscillations are maintained by an air blower, attached to one of the vertical limbs, 
which is switched on and off at appropriate intervals by the signal from a capacitance 
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D ,  = 33.0 mm 

D ,  = 154.5 mm 

6=60" 
uo - 

(a) the plate 

I 
(b) the circular cylinder 

z = x+jy 
t; = 5 + h  

(c) the isolated edge 

FIGURE 1. Notation and geometry of bodies: (a) the plate; (b) the circular cylinder; 
(c) the isolated edge. 

gauge recording the instantaneous water level. When the tube is filled to the 
working-level mark, the period T of the oscillation of the water is 3.34 s and the 
displacement of the surface can be varied up to 0.6 m peak-to-peak. 

Six sizes of circular cylinder, a flat-plate model and a sharp-edged square-section 
cylinder were tested. The circular-cylinder diameters varied from 2.56 to 7.48 cm, 
giving a viscous parameter B ranging between 196 and 1665. The length of a side of 
the square-section cylinder was 2.67 cm, giving a value for /3 of 213 when face on to 
the flow. The same cylinder tested with one diagonal parallel to the flow (hereinafter 
referred to as the diamond) gave a value for /3 of 432. The plate was 3.84 cm wide 
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FIGURE 2. Drag coefficient WR. Keulegan-Carpenter number for circular 
cylinder. Experiment: x ,  p = 1665; 0,  483; A, 196. 
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and was set normal to the flow, giving a value for p of 439. The plate, which is shown 
in' figure 1 ( a ) ,  was machined from a thin rectangular section and the edges were 
chamfered to  give a 60" internal angle. Tests were carried out over values of K ,  
ranging from 0.1 to 10. The Reynolds number varied between 350 and 16650 for the 
range of p and K ,  used. 

Each model was 60.5 cm long and mounted horizontally, being supported a t  each 
end on strain-gauged load cells let into the walls of the U-tube. Water level and in-line 
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FIGURE 4. Inertia coefficient v8. Keulegan-carpenter number for circular 
cylinder. Experiment: o , l =  483; +, 301 ; A, 196; theory, -. 

Kc 

\& 
"9e 

11 
0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 1 0  

Kc 

FIGURE 5. In-line force coefficient v8. Keulegan-Carpenter number for circular cylinder. 
Experiment: x , B = 1665; 0, 1204; 0,  483; A, 196; theory: (CFrms = 1/2 x Z / K , ) .  

force signals were recorded simultaneously on analog tape, and then discretized and 
processed on a digital computer. The sampling rate was such that one cycle of the 
water-level oscillation was defined by 420 data points. The in-line force was analysed 
according to Morison's equation (2) and C, and C, were calculated from the average 
of 50 cycles of data. The force coefficients for the circular cylinder are presented in 
figures 2, 3 and 4, plotted against K,. An alternative way of presenting these results 
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FIGURE 6. Drag coefficient va. Keulegan-Carpenter number for sharp-edged cylinders. Experiment : 
+, flat plate (8  = So"),p = 439; 0, diamond (WO), 431 ; m, square (go"), 231. Theory: -, isolated 
edge theory C,, ; - - -, isolated edge theory plus viscous correction C,, + GBL. 

is to calculate the root-mean-square value and the phase angle of the force. The 
relationship between the r.m.s. in-line force, normalized with respect to !jpG D, and 
the Morison force coefficients may be shown to be (see e.g. Bearman & Graham 1979): 

The results for CFrms are shown in figure 5 plotted against K,. The behaviour of the 
force coefficients with varying K ,  for the sharp-edged cylinders is represented in 
figures 6 and 7 .  

3. Calculation of the forces induced on a body in oscillatory flow 
3.1. Attached flow 

The effect of the Stokes boundary layers on an arbitrary cylindrical, body in 
oscillatory cross-flow is analysed in the Appendix. Provided the Reynolds number 
of the flow is sufficiently large, K,  is small and the flow remains attached, the concept 
of a boundary layer perturbing an outer inviscid flow is valid. In  that case the 
additional force due to skin friction and the effect of the boundary-layer displacement 
thickness is given by (A 2) as: 

qeo is the flow speed on the body surface S calculated by inviscid theory, and FBL 
is the component of force aligned with the free stream (x-axis). The integral and qeo 
are both defined to be positive in the anticlockwise sense round the body. 
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FIQURE 7. Inertia coefficient V 8 .  Keulegan-Carpenter number for sharp-edged cylinders. Experiment : 
+ , flat plate, /3 = 439; 0, diamond, 431 ; a, square, 231. Theory: -, isolated edge theory 
(CMo + (7,") ; ---, isolated edge theory plus viscous correction (CMo + C,, + CMBL). 

In the case of a circular cylinder in oscillatory flow 

ge0 = -200 sine, Po = tiwpo0nD2, 

and 

I 
The drag and inertia coefficients may be found by considering the real and complex 

parts (with respect to time) of the in-line force. Using the definition of Morison's 
equation: 

the force coefficients are 
c, = $%;1(7t/3)-4, 

C ,  = 2+4(7~/3)-:. (9) 
These results have already been compared with those obtained by Stokes (see (3)) 
in the introduction. They are plotted, together with the experimental results, in 
figures 2 4 .  If the results are substituted in (6), it may be seen that 

C&,, = 4 2  7PK;'{l+2(7C/3)-f}. 
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(c) transformation for plate 

FIGURE 8. Conformal transformations for sharp-edgeci bodies. 

For large /3, CFrms approaches its inviscid value. This occurs because the in-line force 
is dominated by the inertia component, and the inertia coefficient tends towards its 
value for inviscid flow. The inviscid value of CFrms, given by the curve 
CFrms = 1 / 2  n2K;', has been plotted against K ,  and is shown along with the 
experimental results in figure 5.  

I n  the case of the sharp-edged cylinders, the force coefficients may be most easily 
obtained by considering the flow in the transformed plane. The half bodies and their 
transformation are shown in figure 8. The tangential velocity is related to the complex 
potential W = U,{ by the expression 
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Body a1 Re ( A m )  /% CDBL @& BL 

Diamond 0.385 , 2(--al)/.\/2 19.73 1.70 
Square 0.835 -a1 + (-al)  27.00 2.40 
Plate 0.407 2( - ~ 1 ) / 2  6.80 0.59 

TABLE 1. Force coefficients due to presence of boundary layer 

where ~ ( s )  is the orientation of the body surfacc in the positive s-direction. If the force 
component F B L  is given by the real part of the complex force 9 B L ,  then, from (A 2) 
in the Appendix, 

0 se jxdz .  
( l + i )  

BL - (@)f p"D fs 
9 

dz  

Therefore, - Jc 

( l + i )  9BL = -t pwDU, ejxdy. 
( X P )  

For a body that is symmetrical about the direction of flow, 

where 

(ak D, 0) are the coordinates in the transformed plane of the N edges of the bodies 
numbered consecutively from the rear to the front stagnation points. The in-line force 
component F B L  is given by the real part (with respect to space) of S B L  and the viscous- 
force coefficients are given by the real and imaginary parts of F B L  with respect to 
time : 

CDBL = -37c3K;l Re{A,,}(@)-i; 

(10) 1 8 
C,,, = -- Re {ABL} (@)-i; 

n: 

based on the diameter of the circumscribing circle. The calculation for the in-line 
viscous force coefficients for the sharp-edged cylinders is summarized in table 1. The 
resulting overall force coefficients are shown in figures 6 and 7 along with the 
experimental results. 

3.2. The force due to vortex shedding 
In the case of sharp-edged cylinders, flow separation occurs even at low K,. The 
component Fv of the in-line force associated with the resulting vortex shedding 
contributes to both the inertia force and the drag force. The force may be cal- 
culated by a technique involving the matching of the flows in the near vicinity of the 
cylinder shedding edges with the local oscillatory separated flow in the immediate 
neighbourhood of an isolated edge (Graham 1980). 

The flow about an infinite wedge in the z-plane (see figure 1 c )  was computed using 

12 B L M  154 
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a discrete vortex calculation in a transformed plane, the [-plane, in which the wedge 
was opened out into a plane wall. The Schwartz-Christoffel transformation that was 
used is given by 

where a determines the edge orientation, L is a lengthscale implied by the 
transformation, and A is related to the internal angle by A = 2 - 8 / x .  Point vortices 
were shed sequentially from the edge and tracked as they moved with the fluid in 
oscillatory flow. Groups of vortices which could be identified as representing 
completely rolled-up sheets far from the body were progressively wound into 
central-core vortices. Each fully formed vortex shed was found to pair, either with 
a vortex shed in the previous half cycle, or with its own image, and as a result to 
move rapidly away from the edge. The calculation was found to be limited to internal 
edge angles less than about 120°, beyond which it ceased to give realistic shedding 
patterns. 

The main results obtained from the isolated edge analysis were as follows. The 
vortex force f, was found to be directed at right angles to the edge-angle bisector 
(for bodies symmetric about that bisector) and given by 

) CA? (11) = ejan L(1-A 

f,(t) = +pQ L K ~ - 2 A ) l ( 2 A - i )  Y(t), (12) 

where Y is a dimensionless function of time obtained from the numerical computation. 
The Morison equation in-line force coefficients were determined via (5 ) ,  with the 
values of A ,  and Be given by 

A =- :g JOT Y sin ot dt, 

calculated from the discrete-vortex simulation taking cyclic averages over 5 cycles 
of computed flow. In  order to avoid any starting transients the averages were taken 
typically between the fifth and ninth cycles after the commencement of the motion. 

In  a real flow at low K,  the maximum displacement of particles in the undisturbed 
flow is small compared to the scale of the body. It is therefore impossible for vortices 
to move far from the edge of the body from which they are shed except under the 
induced velocity field of other vortices, and shedding at any edge becomes independent 
of the other edges. Thus, at  low K ,  the shedding from a single edge of a body, 
providing it is sufficiently far removed from all other edges of the body for there to 
be no mutual interference, is analogous to the case of shedding from an isolated edge. 
The vortex-induced forces on a sharp-edged body, then, may be found directly from 
the results of the isolated-edge calculation by simply matching the local flow around 
each shedding edge of the body with the local flow about the isolated edge, and 
summing their contributions. Such a procedure has been carried out in the present 
work for the cases of the square, the diamond and the flat plate of finite thickness 
with chamfered edges. 

The circular cylinder was excluded partly because the isolated-edge analysis is not 
strictly applicable (since in this particular case one of the assumptions concerning 
the behaviour of the far-field vortices cannot formally be shown to hold) and partly 
because the separation lines are not fixed and are very difficult to predict in oscillating 
flow. 
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Body A A eian E N a~ nz Ae Be ‘Dv ‘Mv 

Diamond $ ( -we 2 1.878 1 1.566 -0.157 5.882 -0.590 

Plate (-C) (-Q) 2 1.489 1 2.602 -0.014 7.761 -0.042 
Square 4 (2[d)i\G-c54 4 0.939 4 2  1.566 -0.157 4.159 -0.417 

TABLE 2. Force coefficients due to vortex shedding 

The half bodies and their transformations are shown in figure 8. In the near vicinity 
of the shedding edge z,, as z-+z,, the transformation takes the form 

x +. Ecp, 

where E is determined by the body geometry. Thus, very close to the shedding edge, 
the local transformations are identical with the transformation for the isolated edge 
(see (11)) providing that the internal angles are the same, and also that 

h(1-A)  = E.  

If the transformations are identical, and if the velocity U ,  in the body transformed 
plane is the same as that in the transformed plane for the isolated edge, then the two 
edge flows U, in the real plane must be identical since 

The edge flows are matched, then, provided that the ratio aL of the lengthscales is 
given by 

where D is the characteristic length of the body. 
The vortex force in-line with the direction of the free stream is f, n,, where n, is 

its direction cosine with respect to  the x-axis, which is always parallel to the direction 
of the free stream. Since the vortex force on the isolated edge is proportional to the 
lengthscale L (see (12)) the in-line force coefficients for a body with edges of the same 
angle may now be written in terms of the isolated edge results as: 

N 

k-1 

N 

(& = x aLk nXk A ,  Kp-2A)/@A-l), 

c, = x aLk n,. Be K p - l ) ,  
k-1 

where N is the number of shedding edges on the body. 
The calculations for the three bodies in question are summarized in table 2 and 

the results are presented in full in figures 6 and 7, where the experimental results are 
also plotted. 

4. Discussion of results 
The behaviour of the drag coefficient with varying B is shown for the circular 

cylinder over a range of K ,  from 0.1 to 10.0 in figure 2. It may be seen that, for a given 
value of K,, the drag coefficient drops as the /3 parameter increases. More striking, 

12-2 
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perhaps, is the change in trend with K ,  exhibited by the data. As K, increases from 
a value of 0.1, the drag coefficient first decreases with increasing K,  until a given value 
of K, (depending on the /? parameter, but somewhere in the region of 2) is approached. 
I n  this region the viscous-flow theory predicts values of the drag coefficient in 
approximate agreement with those obtained from experimental results. As K ,  
increases beyond this region, the drag coefficient rises. 

At very low K ,  the flow is unseparated and a regime in which viscous effects 
dominate is to be expected. As K ,  increases the boundary layers separate and, at a 
sufficiently high value, a regime in which the flow is dominated by vortex shedding 
is established. The occurrence of these two distinct regimes in the K, range covered 
in the present investigation has been indicated by previous studies. Measurements 
by Stuart & Woodgate (1954) suggested that the viscous regime for circular cylinders 
occurs for amplitudes of vibration of about one tenth or less of the cylinder diameter, 
i.e. K ,  5 0.6. Flow-visualization experiments carried out by Singh (1979), Grass & 
Kemp (1979) and Williamson (1982) demonstrate that  vortices begin increasingly t o  
dominate the flow for K, 2 5.  It is tempting to assume that the change in trend shown 
by the force coefficients is attributable to  the onset of vortex shedding. This would 
imply that the initiation of vortex shedding is not associated with a fixed ratio of 
flow amplitude to cylinder diameter, but depends on the /?parameter, since the change 
of trend occurs a t  different values of K ,  with different values of /?. 

A better estimate of the effect of vortex shedding may be obtained by subtracting 
the theoretical value of the viscous drag coefficient CDBL (see (9)) from the drag 
coefficient obtained from the experimental data, as shown in figure 9. Extrapolating 
t,hese results (dashed line) suggests that  the additional contribution to the drag force 
tends linearly to  zero. But the scatter a t  lower values, probably due to inaccuracies 
in the measurement of the forces, which are very small, may obscure a region K, < K,, 
in which there is no contribution from separation. Even if this is so, K,, is small 
( 5 1 .O) .  Applying the separated flow analysis for an isolated edge in oscillatory flow 
to the case of a circular cylinder, S = K and therefore h = 1, gives : 

C,  cc K,. 

This result is in agreement with the linear trend of the data in the above figure. 
However, as discussed above, the analysis cannot be justified for the case when 
separation is from a smooth surface, so the agreement here may be fortuitous. There 
is no evidence available to us from flow visualization that separation with vortex 
shedding occurs on a circular cylinder a t  such low values of K ,  ( N 1). The increasing 
CDV just above this value may be attributed to  the onset of separations which remain 
attached to  the surface as separation bubbles. 

The variation of the inertia coefficient for the circular cylinder with the /? parameter 
and K ,  is shown in figures 3 and 4. For all values ofp the inertia coefficient increases 
rapidly as K ,  decreases from a value of 10.0, until i t  levels off a t  a relatively steady 
value for K ,  below about 2.0 or 3.0. In  the low-K, range the increase in the inertia 
coefficient due to viscous effects is quite evident in the measured data except for the 
cases p = 483 which does not appear to be approaching the theoretical level. (It is 
difficult of course to measure forces very accurately on small cylinders at values of 
K ,  - 1 . )  

The variation of drag coefficient with K ,  for the sharp-edged cylinders is shown 
in figure 6. These results are in each case for only one value of /?. However, they 
demonstrate the strong effect of the cross-sectional shape of the cylinder on the force 
coefficients a t  low values of K,. The theoretical results are shown for the inviscid drag 
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Kc 

FIQURE 9. Inviscid drag coefficient (C, - CDT) v.3. Keulegan-Carpenter number for circular cylinder: 
C,, - Viscous theory value of C,. x , /3 = 1665; 0, 1204; V, 964; 0,  483; +, 301 ; A, 196. 

coefficient CDv, derived from the matched isolated-edge theory, and the overall drag 
coefficient associated with the combined inviscid (separated) and viscous (attached) 
contributions to the in-line force. 

The matched-isolated-edge theory assumes that vortices are small compared to  the 
distance between the separation points and, hence, that there is no interaction 
between the vortices shed from different edges of the cylinder. Flow-visualization 
experiments (Singh 1979) have shown that, if K ,  is much larger than about 3, the size 
of the vortices is of the order of D and that, particularly in the case of the square, 
there may be strong interaction between the vortices shed from different edges. The 
inviscid drag coefficient, therefore, is not expected to be applicable beyond this range. 
Furthermore, no allowance is made for the effects of viscous diffusion in the discrete- 
vortex calculation. Pairs of contra-rotating vortices remote from the cylinder are 
assumed to make a negligible contribution to the in-line force. The effects of viscous 
diffusion, therefore, may only be expected to significantly affect the calculation in so 
far as they relate to the forming vortices. Viscous diffusion facilitates the cancellation 
of oppositely signed circulation in vortex pairs. Its likely effect, which will be more 
pronounced as fi  gets smaller, will be the reduction of the vortex force on the body. 
The present calculation, then, particularly in those cases in which the newly formed 
but as yet unpaired vortices closely approach the cylinder surface, may be expected 
to overpredict the vortex force. 

The theoretical value of the inviscid drag coefficient may be seen to be in good 
agreement with experimental results in the case of the plate, although it is about 20 % 
too high in the cases of the diamond and the square. However, even in the latter two 
cases the experimental trends are in good agreement with the trends predicted by 
theory - namely, the drag coefficient is independent of K ,  for right-angled shedding 
edges and, further, the ratio of the drag coefficients for the diamond and the square 
is 4 2 ,  as predicted by the theory. 

The contribution made by the viscous effects in every case raises the value of the 
drag coefficients, although by a much smaller amount in the case of the plate. The 
cross-sectional aspect ratio (i.e. the width D ,  normal to the flow direction divided 
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by the streamwise cylinder thickness Db) is 5.0 compared to a value of 1.0 for the 
square and the diamond. The contribution made by the skin friction and boundary- 
layer displacement to the in-line force, depends mainly on the thickness D, of the 
cylinder, whereas the contribution made by the pressure forces due to separation 
depends mainly on the width D,. Therefore, the viscous contribution forms a much 
smaller proportion of the overall in-line force in the case of the plate than in the cases 
of the square and the diamond. Furthermore, in the latter two cases, a larger 
proportion of the cylinder surface is exposed to local regions of high velocity induced 
by vortices. In the vicinity of the shedding edge, the direction of the boundary-layer 
flow may actually be the reverse of that assumed by the viscous theory and, hence, 
the skin-friction effect will be incorrectly predicted. 

The variation of the inertia coefficient with K ,  for the sharp-edged cylinders is 
shown in figure 7. The values of the inviscid attached-flow inertia coefficients C ,  of 
1.17, 2.80 and 1.80 respectively for the plate, the square and the diamond, were 
calculated by the boundary integral method (Drossopoulos 1980). Although the 
magnitude of the inertia coefficients is reasonably well predicted, except perhaps in 
the case of the diamond, the trend compared with experimental data is disappointing. 

When K, is higher than about 3, it is interesting to note that the trend of the 
experimental results changes, and the data for C ,  appear to lie on curves proportional 
to K 2  for all sharp-edged cylinders. This may be coincidental but if not it suggests 
that as the amplitude of the motion increases the fine detail of the cylinder geometry 
may become much less significant and that as a result a common vortex-shedding 
pattern ensues. 

5. Conclusions 
A viscous-flow analysis to O ( p )  has been presented for the drag and inertia 

coefficients, C ,  and C ,  respectively, of the in-line force on stationary cylinders of 
different cross-sections in planar oscillatory flow. The analysis assumes that the 
Keulegan-Carpenter number K ,  is small and that the flow is attached, laminar and 
two-dimensional. 

Force measurements taken on circular cylinders show that the theory gives 
generally good predictions of the magnitude of these coefficients in the low-Keulegan- 
Carpenter-number range K,  < 2.0. In the higher-Keulegan-Carpenter-number range, 
the drag coefficient is found to be directly proportional to the Keulegan4arpenter 
number if the viscous contribution is first subtracted, whilst the inertia coefficient 
decreases rapidly with increasing Keulegan-Carpenter number. 

In the case of the circular cylinder, the onset of separation effects appears a t  
Keulegan-Carpenter numbers below 1 .O. 

An inviscid theory is used to calculate the in-line force on three sharp-edged 
cylinders, namely a thick 'flat plate ' with 60" shedding-edge angles, a square-section 
cylinder with its face normal to the flow, and a diamond cylinder. The theory is 
claimed to be valid when the Keuleganearpenter number is less than about 3. In 
this range, measurements of the drag and inertia coefficients show that for the case 
of the flat plate good theoretical predictions are achieved. In the cases of the square 
and the diamond cylinders, the measured drag coefficients follow the predicted trends, 
but the theory overpredicts the magnitude of the coefficients by about 20%. The 
prediction of the inertia coefficient is reasonable in the case of the square, but is less 
so in the case of the diamond. 

When the Keulegan-Carpenter number is larger than about 3, the measured drag 
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coefficients for all the sharp-edged cylinders vary similarly with Keulegan4arpenter 
number suggesting that all the cylinders may have a similar vortex-shedding pattern. 
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out an error in the boundary-layer analysis. 

Appendix. The forces due to the boundary layers on a body in 
oscillatory flow 

We assume that K,  is very small and that the Reynolds number is sufficiently 
large that the flow can be represented by an outer inviscid flow and an inner viscous 
laminar boundary layer. Apart possibly from the immediate neighbourhood of a 
sharp edge, if any are present, the flow is attached. The outer inviscid (zero-order) 
solution may be obtained by solving Laplace's equation for the complex velo- 
city potential for oscillatory flow past the body. Let the resulting potential be 
Wo(z), where z is the complex coordinate z+ j y  = rde and j = 1/ - 1. This solu- 
tion has the following properties: aWo/az+ oo eiot, the oscillatory free stream as 
r+oo and Im(Wo) = constant (usually 0) on the surface S of the body. Let 
I a W0/& I = qeo = ijeo eht be the inviscid surface velocity on S. 

In response to this velocity a zero-order oscillatory boundary layer develops on 
the surface of the body. In  the limit K,+O the velocity ql = ijl eid in this boundary 
layer satisfies : 

with 

where (8,n) are local streamline coordinates (see figure l b ) .  The equation for the 
high-frequency oscillatory boundary layer has the solution (Batchelor 1967) 

ijl(s, n) = de0(8) (1 -e-(l+')On), 

satisfying q1 = 0 on n = 0 (the surface of the body) and ql+qeo as n+oo. q and 8 are 
taken as being positive in the anti-clockwise direction round the body and 

This boundary layer has a displacement thickness 

6* = Joa (1-E) dn = (l+i)-la-l  

which causes an O(@) inviscid perturbation W,(z) to the velocity potential of 
the outer flow. By considering the effect of 6* as a source density distribution 
ml(s) = 2d/ds(qe0B*) over the surface S of the body, Wl(z) can be calculated to be 

da,, log ( z - ~ ' ( 8 ) )  ds, W1(z) = n(l  +i) a ds 

where ~ ' ( 8 )  is a complex coordinate on the surface S. This completes the flow to O(@), 
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which, see Wang (1968), contains no effect of curvature on the boundary layer nor 
of steady streaming to this order. 

The corresponding composite velocity field is 

aw, awl 
az a2 

(u -jv) = - + - + (ql - qeo) e-jx, 

where x is the surface slope of S. It should be noted that, while the surface stream 
functionIm (W,) Is = constant, Im ( W,) Is = qe S* 4 constant, due to thedisplacement 
effect of the boundary-layer sources. 

I n  the case of oscillatory flow past a circular cylinder of diameter D the composite 
flow field to O ( @ )  written in terms of the stream function is 

which is the same as a corresponding expression given by Wang (1968). 
The pressure force on the body to  O(P-4) is obtained from the two irrotational parts 

of the flow field W, and W,, since (A 1) shows that the boundary-layer velocity 
(ql -qeo) gives no contribution to the surface pressure to this order. 

The force for a general body is most easily obtained from the outer flow potentials 
using Blasius theorem. 

I n  this case since K,+O, 

is the zero-order complex force. The streamwise component of this F, = iwpo, ACMo 
for a body of cross-sectional area A. However the Blasius formula is only correct for 
a complex potential W for which the stream function Im (W) is a constant on the 
body surface. Therefore in the present case the O(,T:) force is given by 

Since W, is a potential derived from a singularity distribution entirely on the body 
the contour for the first integral may be expanded to infinity. Therefore substituting 
in both integrals : 

g1 = -iJpw $ ( $ s s l o g ( z - z ' ( s ) ) d s  
n ( l + i ) a  ds 

Since, as z +co, log ( z  - z ' ( s ) )  = log (z) - z ' / z  + . . . and f (dde,/ds) ds 
the residue theorem gives 

0, application of 

$ ieodz, 
After integrating by parts ipw g1 = v 

(1+1)a s 

Q geodx. 
giving a streamwise force ipw 

= ~ 

( l+ i )a  

This is the O ( p : )  force induced by pressure on the body surface. However the (q, -qeo) 
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rotational part of the flow field generates a surface shear stress which also contributes 
to the overall force, 

a291 - rw = y - - - y (  1 + i)2 a2geo eiwt. 

Integrating rw round the surface S gives a total skin-friction force in the streamwise 

an2 

direction 

Thus, as in the case of the circular cylinder, the skin-friction and pressure forces due 
to the boundary layer on a body of arbitrary cross-section to O ( p i )  are equal. 

The total streamwise force due to the boundary layer is therefore 

(A 2) 

giving equal contributions in phase with the acceleration and with the velocity. 
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